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Fig. S1 XPS surveys of WS2 bulk and WS2 10K.

Fig. S2 Polarization curves of electrodes modified with i) freshly prepared WS2 10K dispersion; ii) 
WS2 10K dispersion 1 month old (1 month); iii) WS2 10K dispersion 1 month old, washed with  
toluene and iv) WS2 10K dispersion 1 month old, washed with o-dichlorobenzene (o-DCB).



Fig. S3 Polarization curves of the electrodes modified with fresh 0.5K, 1K, 3K and 10K dispersions 
before (full lines) and after (dashed lines) washing with acetone.

Fig. S4 XPS surveys of a GCE electrode modified with 1 month old WS2 10K dispersion before and 
after cleaning with acetone.



Fig. S5 High-resolution N1s core level XPS spectra from a GCE electrode modified with 1 month 
old WS2 10K dispersion before and after cleaning in acetone.

Fig. S6 Electrochemical impedance spectra of the electrodes modified with i) freshly prepared 
WS2 10K dispersion; ii) WS2 10K dispersion 1 month old and iii) WS2 10K dispersion 1 month old, 
washed with acetone. The measurements were conducted in 0.1 M KCl-0.01 M phosphate buffer 
solution (pH = 7.4) containing 5 mM K3Fe(CN)6-K4Fe(CN)6 (1:1).



Fig. S7 a) Cyclic voltammetry scans of a WS2 10K modified electrode performed between 0 and 
1.5 V (vs. Ag/AgCl) in 0.5 M H2SO4. b) Polarization curves of WS2 10K modified electrodes before 
and after activation at different potentials in 0.5 M H2SO4.

Fig. S8 XPS surveys of WS2 10K before (C-WS2 10K) and after (A-WS2 10K) activation.



Fig. S9 High resolution O 1s core level XPS spectra of WS2 10K before (C-WS2 10K) and after (A-
WS2 10K) activation.

Fig. S10 Raman spectra of WS2 10K before (WS2 10K) and after (A-WS2 10K) activation.



Fig. S11 Electrochemical impedance spectra of a WS2 10K electrode: i) before activation (WS2 
10K); ii) after activation (A-WS2 10K) and iii) after activation and 2 hours HER test (A-WS2-2h). EIS 
was conducted in 0.1 M KCl-0.01 M phosphate buffer solution (pH = 7.4) containing 5 mM 
K3Fe(CN)6-K4Fe(CN)6 (1:1).

Fig. S12 Cyclic voltammograms performed between 0.5 and -0.3V (vs. Ag/AgCl) with a scan rate 
of 100 mV s-1 in 0.5 M H2SO4 for i) WS2 10K and ii) activated WS2 10K (A-WS2 10K), respectively.



Fig. S13 High resolution (a) W 4f and 5p and (b) S 2p core level XPS spectra of controlled WS2 10K 
before (C-WS2 10K) and after (C-WS2-2h) 2h HER test.

Fig. S14 Electrochemical impedance spectra of i) WS2 10K; ii) activated WS2 10K (A-WS2 10K) and 
iii) activated WS2 10K subjected to 2 hours HER test (A-WS2-2h) in 0.5 M H2SO4.



Fig. S15. Cyclic voltammogram scans of (a) WS2 10K, (c) a-WS2 10K and (e) a-WS2-2h at different 
scan rates (0.1, 0.08, 0.06, 0.04, 0.02 and 0.01 V s-1) and the corresponding capacitive current 
density measured at 0.25 V (vs. RHE) plotted as a function of scan rate (b, d, f). The average value 
of the slope was determined as the double-layer capacitance (Cdl) of each catalyst. The calculated 
Cdl of WS2 10K, A-WS2 10K and A-WS2-2h are 1.03, 4.46 and 0.95 mF cm−2, respectively.

Table S1 XPS data of composition of WS2 bulk and 500, 1K, 3K and 10K centrifugation products.

WS2 bulk WS2 0.5K WS2 1K WS2 3K WS2 10K



S (%At conc) 65.5 65.2 65.2 65.4 66.0

W (%At conc) 34.5 34.1 34.8 34.6 34.0

Ratio of S to W 1.9 : 1 1.9 : 1 1.9 : 1 1.9 : 1 1.9 : 1

Table S2 The atomic ratios of S to W and W(VI) to W(IV) of controlled WS2 10K (C-WS2 10K), 

activated WS2 10K (A-WS2 10K), activated WS2 10K subjected to 0.5 and 2 hours HER test (A-WS2-

0.5h and A-WS2-2h) and controlled WS2 10K subjected to 2 hours HER test (C-WS2-2h).

C-WS2 10K A-WS2 10K A-WS2-0.5h A-WS2-2h C-WS2-2h

Ratio of S to W 1.9 : 1 1.6 : 1 1.7 : 1 1.8 : 1 1.9 : 1

Ratio of W(VI) to W(IV) 0.1 : 1 0.4 : 1 0.3 : 1 0.2 : 1 0.1 : 1

Table S3 Comparison of the electrocatalytic activity of WS2 nanosheets/nanodots (WS2 NSDs) 

and activated WS2 NSDs versus the WS2-based catalysts on GCE (two catalysts on carbon fiber 

paper and carbon cloth have been pointed out) reported recently for HER in 0.5 M H2SO4 .

Catalysts
Mass loading

（mg cm-2）

Overpotential (mV)

for j=10 mA cm-2

Tafel Slope

(mV dec-1)
Reference

WS2 NSDs 0.283 337 80 This work

Activated WS2 NSDs 0.283 255 73 This work

WS2 nanoflakes 1 ~358 ~200 1

BuLi exfoliated WS2 nanosheets

 (~80% 1T- WS2)
0.001-0.0065

240 (1T)

440 (2H)

55(1T)

110(2H)
2

BuLi exfoliated WS2 0.0707 ~690 ~110 3

WS2(1-x)Se2x nanotubes on CFP 0.21 ~270 105 4

WS2 on carbon cloth - 225 105 5

WS2 nanosheets 0.0566 ~380 ~95 6

WS2 nanosheets/quantum dots 0.0354 ~340 (DMF) 70 (DMF) 7



~355 (NMP) 75 (NMP)

Aromatic-exfoliated WS2 0.0142 ~520 ~70 8

WS3−x Films - 494 43.7 9

Ta-doped WS2 0.0707 ~720 ~170 10
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